Definable Regularity for NIP Relations

Roland Walker

University of Illinois at Chicago

April 19, 2017

(Simple) Graphs

Let V be a finite set, and let $E \subseteq V \times V$.

Definition

If E is irreflexive and symmetric, we call G = (V, E) a (simple) graph with

$$V(G) := V$$

$$v(G) := |V|$$

$$E(G) := \{\{a,b\} : (a,b) \in E\}$$

$$e(G) := |E(G)| = |E|/2$$

Bipartite Graphs

Let V and W be finite sets, and let $E \subseteq V \times W$.

Definition

We say that G = (V, W; E) is a bipartite graph with

$$V(G) := V + W$$

$$v(G) := |V| + |W|$$

$$E(G) := E$$

$$e(G) := |E|$$

Note: Any graph G = (V, E) induces a bipartite graph G' = (V, V; E).

Edge Density for Induced Bipartite Graphs

Let G = (V, E) be a finite graph.

Definition

Given $A, B \subseteq V$, the induced bipartite graph (A, B; E) has

$$V(A,B) := A + B$$

$$v(A,B):=|A|+|B|$$

$$E(A,B):=E\cap (A\times B)$$

$$e(A,B):=|E(A,B)|$$

$$d(A,B) := \frac{e(A,B)}{|A||B|}$$

Note: We do not require A and B to be disjoint.

Regularity and Defect

Let G = (V, E) be a finite graph. Fix $\varepsilon, \delta \in [0, 1]$.

Definition

Given $A, B \subseteq V$, we say the pair (A, B) is (ε, δ) -regular iff: there exists $\alpha \in [0, 1]$ such that for all nonempty sets $A' \subseteq A$ and $B' \subseteq B$ with $|A'| \ge \delta |A|$ and $|B'| \ge \delta |B|$, we have $|d(A', B') - \alpha| \le \frac{\varepsilon}{2}$.

Let P be a finite partition of V. Fix $\eta \in [0, 1]$.

Definition

The defect of P is

$$\mathsf{def}_{\varepsilon,\delta}(P) := \{ (A,B) \in P^2 : (A,B) \text{ not } (\varepsilon,\delta) \text{-regular} \},$$

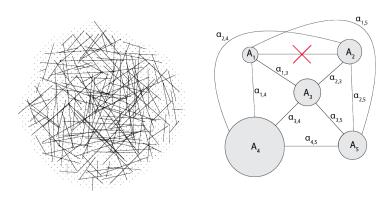
and we say that P is $(\varepsilon, \delta, \eta)$ -regular iff:

$$\sum_{(A,B) \;\in\; \mathsf{def}_{arepsilon,\delta}(P)} |A| |B| \leq \eta |V|^2.$$

Szemerédi Regularity Lemma (without Equipartition)

Lemma

For all $\varepsilon, \delta, \eta > 0$, there exists $M = M(\varepsilon, \delta, \eta)$ such that any finite graph has an $(\varepsilon, \delta, \eta)$ -regular partition with at most M parts.



Szemerédi Regularity Lemma (without Equipartition)

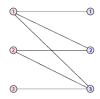
Lemma

For all $\varepsilon, \delta, \eta > 0$, there exists $M = M(\varepsilon, \delta, \eta)$ such that any finite graph has an $(\varepsilon, \delta, \eta)$ -regular partition with at most M parts.

(Szemerédi 1976)
$$M(\varepsilon, \varepsilon, \varepsilon) \leq \operatorname{twr}_2(O(\varepsilon^{-5}))$$

Can irregular pairs be completely eliminated?

No, if we admit arbitrarily large half-graphs, then irregular pairs are necessary.



Szemerédi Regularity Lemma (without Equipartition)

Lemma

For all $\varepsilon, \delta, \eta > 0$, there exists $M = M(\varepsilon, \delta, \eta)$ such that any finite graph has an $(\varepsilon, \delta, \eta)$ -regular partition with at most M parts.

(Szemerédi 1976)
$$M(\varepsilon, \varepsilon, \varepsilon) \leq \operatorname{twr}_2(O(\varepsilon^{-5}))$$

Can irregular pairs be completely eliminated?

No, if we admit arbitrarily large half-graphs, then irregular pairs are necessary.

How fast does M grow as $\delta \to 0$?

(Gowers 1997)
$$M(1 - \delta^{1/16}, \delta, 1 - 20\delta^{1/16}) \ge \operatorname{twr}_2(\Omega(\delta^{-1/16}))$$

How fast does M grow as $\eta \to 0$?

(Conlon-Fox 2012) $\exists \ \varepsilon, \delta > 0$ such that $M(\varepsilon, \delta, \eta) \ge \operatorname{twr}_2(\Omega(\eta^{-1}))$

Bipartite Regularity and Defect

Let $G = (V_1, V_2; E)$ be a finite bipartite graph.

Let $\overline{P} = (P_1, P_2)$ where each P_i is a finite partition of V_i .

We will use the $\|\overline{P}\|$ to denote $\max(|P_1|,|P_2|)$.

Let $\varepsilon, \delta, \eta \in [0, 1]$.

Definition

The *defect* of \overline{P} is

$$\mathsf{def}_{\varepsilon,\delta}(\overline{P}) := \{(A,B) \in P_1 \times P_2 : (A,B) \text{ not } (\varepsilon,\delta)\text{-regular}\},$$

and we call \overline{P} $(\varepsilon, \delta, \eta)$ -regular iff:

$$\sum_{(A,B) \ \in \ \mathsf{def}_{arepsilon,\delta}(\overline{P})} |A||B| \le \eta |V_1||V_2|.$$

Bipartite Szemerédi Regularity Lemma

Lemma

For all $\varepsilon, \delta, \eta > 0$, there exists $M = M(\varepsilon, \delta, \eta)$ such that any finite bipartite graph has an $(\varepsilon, \delta, \eta)$ -regular partition P with $\|P\| \leq M$.

(Gowers 1997)
$$\Rightarrow M(1 - \delta^{1/16}, \delta, \frac{8}{9} - 40\delta^{1/16}) \ge \operatorname{twr}_2(\Omega(\delta^{-1/16}))$$

k-Partite k-Uniform Hypergraphs

Let $k \geq 2$, V_1, \ldots, V_k be finite sets, and $E \subseteq V_1 \times \cdots \times V_k$.

Definition

We say that $G = (V_1, \dots, V_k; E)$ is a k-partite (k-uniform) hypergraph with

• vertex set
$$V(G) := V_1 + \cdots + V_k$$

• order
$$v(G) := |V_1| + \cdots + |V_k|$$

• edge set
$$E(G) := E$$

• size
$$e(G) := |E|$$

Note: When k = 2, $G = (V_1, V_2; E)$ is a bipartite graph.

Edge Density for k-Partite Hypergraphs

Let $G = (V_1, \dots, V_k; E)$ be a finite k-partite hypergraph.

Definition

Given $A_i \subseteq V_i$, the subgraph $(A_1, \ldots, A_k; E)$ has

• vertex set
$$V(A_1, \ldots, A_k) := A_1 + \cdots + A_k$$

• order
$$v(A_1,\ldots,A_k) := |A_1| + \cdots + |A_k|$$

• edge set
$$E(A_1, \ldots, A_k) := E \cap (A_1 \times \cdots \times A_k)$$

• size
$$e(A_1, ..., A_k) := |E(A_1, ..., A_k)|$$

• density
$$d(A_1,\ldots,A_k):=rac{e(A_1,\ldots,A_k)}{|A_1|\cdots|A_k|}$$

Rectangular Sets

Definition

A tuple of sets $\overline{A} = (A_1, \dots, A_k)$ names the rectangular set $A_1 \times \dots \times A_k$.

- We write $B \subseteq \overline{A}$ iff: $B \subseteq A_1 \times \cdots \times A_k$.
- We write $\overline{B} \subseteq \overline{A}$ iff: each $B_i \subseteq A_i$.
- We use $|\overline{A}|$ to denote $|A_1| \cdots |A_k|$.
- We use $\|\overline{A}\|$ to denote $\max(|A_i| : 1 \le i \le k)$.

k-Partite Regularity and Defect

Let $G = (V_1, \dots, V_k; E)$ be a finite k-partite hypergraph.

Fix $\varepsilon, \delta, \eta \in [0, 1]$.

Definition

Given $\overline{A} \subseteq \overline{V}$, we say \overline{A} is (ε, δ) -regular iff: there exists $\alpha \in [0, 1]$ such that for all nonempty $\overline{B} \subseteq \overline{A}$ with $|B_i| \ge \delta |A_i|$, we have $|d(\overline{B}) - \alpha| \le \frac{\varepsilon}{2}$.

Let $\overline{P} = (P_1, \dots, P_k)$ where each P_i is a finite partition of V_i .

Definition

The *defect* of \overline{P} is

$$\mathsf{def}_{\varepsilon,\delta}(\overline{P}) := \{\overline{A} \in \overline{P} : \overline{A} \text{ not } (\varepsilon,\delta)\text{-regular}\},$$

and we call \overline{P} $(\varepsilon, \delta, \eta)$ -regular iff:

$$\sum_{(A,B) \in \mathsf{def}_{\varepsilon,\delta}(P)} |\overline{A}| \le \eta |\overline{V}|.$$

Fibers and VC Dimension

Let $E \subseteq V_1 \times \cdots \times V_k$.

For each $I \subseteq [k]$, let V_I denote $\prod_{i \in I} V_i$.

With $I \subseteq [k]$ specified, we can view E as a subset of $V_I \times V_{I^c}$ and for each $b \in V_{I^c}$, let E_b denote the fiber of b; i.e.,

$$E_b := \{a \in V_I : (a, b) \in E\}.$$

Definition

 $VC(E) = \max\{VC(S_I) : I \subseteq [k]\} \text{ where } S_I = \{E_b : b \in V_{I^c}\}.$

Regularity Lemma for k-Partite Hypergraphs

Fix $k \geq 2$ and $d \in \mathbb{N}$.

Lemma

For any $\varepsilon, \delta, \eta > 0$, there is a constant c = c(k, d) such that any finite k-partite hypergraph with VC dimension at most d has an $(\varepsilon, \delta, \eta)$ -regular partition \overline{P} with $\|\overline{P}\| \leq O(\gamma^{-c})$ where $\gamma = \min\{\varepsilon, \delta, \eta\}$.

Note: When k = 2, this is the Bipartite Szemerédi Regularity Lemma restricted to graphs with $VC(E) \le d$.

Finitely Additive Probability Measures

Let X be a set, $\mathcal{B} \subseteq \mathcal{P}(X)$ a boolean algebra, and $\mu : \mathcal{B} \to [0,1]$.

Definition

We call μ a finitely additive probability measure iff:

- $\mu(\varnothing)=0$
- $\mu(X) = 1$
- For all disjoint $A, B \in \mathcal{B}, \ \mu(A \cup B) = \mu(A) + \mu(B)$

For this talk, assume all measures are finitely additive probability measures.

Definition

If \mathcal{M} is a model, we call a finitely additive probability measure on the boolean algebra of all definable subsets of M^n a Keisler measure.

Finitely Approximated Measures

Let X be a set, $\mathcal{B} \subseteq \mathcal{P}(X)$ be a boolean algebra.

Definition

For any finite sequence \overline{p} in X of length $n \geq 1$, let $\operatorname{Fr}_{\overline{p}}$ denote the frequency measure determined by \overline{p} ; i.e., for $B \in \mathcal{B}$, we have

$$\operatorname{Fr}_{\overline{p}}(B) = \frac{1}{n} \sum_{i=1}^{n} 1_{B}(p_{i}).$$

Let μ be a measure on \mathcal{B} .

Definition

For $\mathcal{F}\subseteq\mathcal{B}$, we say μ is *finitely approximated (fap)* on \mathcal{F} iff: for all $\varepsilon>0$, there is an ε -approximation $\overline{p}\in X$ such that for all $A\in\mathcal{F}$

$$|\mu(A) - \operatorname{Fr}_{\overline{p}}(A)| < \varepsilon.$$

E-Definable Sets

Let $E \subseteq V_1 \times \cdots \times V_k$ and $I \subseteq [k]$.

Definition

A subset of V_I is *E-definable* over $D \subseteq V_{I^c}$ iff: it is a boolean combination of sets of the form E_b for $b \in D$.

- We use $\mathcal{B}_{\mathcal{E}}(D)$ to denote the boolean algebra of all such sets.
- If D is finite, we use $A_E(D)$ to denote the atoms in $B_E(D)$.

Density for Definable Rectangular Sets

Let \mathcal{M} be a structure and $\phi(v_1, \ldots, v_k) \in \mathcal{L}_M$.

Let each $V_i = M^{|v_i|}$, $E = \phi(\overline{V})$, and $G = (\overline{V}; E)$.

Let each μ_i be a Keisler measure on V_i .

Definition

We say μ_i is fap on E iff: for all $n \in \mathbb{N}$, μ_i is fap on

$$\bigcup \left\{ \mathcal{B}_{E}(D) : D \subseteq V_{\{i\}^{c}} \text{ and } |D| \leq n \right\}.$$

Suppose each μ_i is fap on E, and let $\mu = \mu_1 \ltimes \cdots \ltimes \mu_k$.

It follows that μ is fap on E and satisfies a weak Fubini property.

Definition

The *density* of a definable $\overline{A} \subseteq \overline{V}$ is

$$d(\overline{A}) := \frac{\mu(E \cap \overline{A})}{\mu(\overline{A})} = \frac{\mu(\phi(\overline{A}))}{\mu_1(A_1) \cdots \mu_k(A_k)}.$$

Definable Regularity and Defect with 0-1 Densities

Fix $\varepsilon, \delta, \eta \in [0, 1]$.

Definition

Given definable $\overline{A} \subseteq \overline{V}$, we say \overline{A} is (ε, δ) -regular with 0-1 densities iff: there exists $\alpha \in \{0,1\}$ such that for all nonempty definable $\overline{B} \subseteq \overline{A}$ with $\mu(\overline{B}) \geq \delta \mu(\overline{A})$, we have $|d(\overline{B}) - \alpha| \leq \varepsilon$.

Let \overline{P} be a partition of \overline{V} .

Definition

The 0-1 defect of \overline{P} is

$$\mathsf{def}\,_{\varepsilon,\delta}^{0\text{-}1}(\overline{P}) := \{\overline{A} \in \overline{P} : \overline{A} \text{ not } (\varepsilon,\delta) \text{-regular with 0-1 densities}\},$$

and we say \overline{P} is $(\varepsilon, \delta, \eta)$ -regular with 0-1 densities iff:

$$\sum_{\overline{A} \,\in\, \mathsf{def}\,_{\varepsilon,\delta}^{0\text{-}1}(\overline{P})} \mu(\overline{A}) \leq \eta.$$

Definable Regularity Lemma for NIP Relations

Let $k \geq 2$ and $d \in \mathbb{N}$.

Theorem

There is a constant c = c(k, d) such that IF

- $\varepsilon, \delta, \eta > 0$
- ullet $E=\phi(\overline{V})$ for some $\phi(v_1,\ldots,v_k)\in\mathcal{L}_M$ and structure \mathcal{M}
- $VC(E) \leq d$
- each μ_i is a Keisler measure on V_i which is fap on E

THEN there is an $(\varepsilon, \delta, \eta)$ -regular partition \overline{P} of \overline{V} with 0-1 densities such that

- $\|\overline{P}\| \le O(\gamma^{-c})$ where $\gamma = \min\{\varepsilon, \delta, \eta\}$
- for each P_i , the parts of P_i are definable using a single formula ψ_i which is a boolean combination of ϕ depending only on γ and ϕ .

E-Definable Sets

Let $k \geq 2$.

Let \mathcal{M} be a structure and $\phi(v_1, \ldots, v_k) \in \mathcal{L}_M$.

Let each $V_i = M^{|v_i|}$, $E = \phi(\overline{V})$, and $G = (\overline{V}; E)$.

Definition

A subset of V_I is *E-definable* over $D \subseteq V_{I^c}$ iff: it is a boolean combination of sets of the form E_b for $b \in D$.

- We use $\mathcal{B}_{E}(D)$ to denote the boolean algebra of all such sets.
- If D is finite, we use $A_E(D)$ to denote the atoms in $B_E(D)$.

Definition

A subset of \overline{V} is E_{\otimes} -definable iff: it is a finite union of rectangular sets of the form $\overline{A} \subseteq \overline{V}$ where each A_i is E-definable.

Counting Atoms

Lemma

If $VC(E) \le d$ and |D| = n, both finite, then

$$A_E(D) \leq \binom{n}{d} + \cdots + \binom{n}{0} \leq (d+1)n^d.$$

Proof: Sauer-Shelah.

ε -Nets

Let $\mathcal{B} \subseteq \mathcal{P}(X)$ be a boolean algebra and μ a measure on \mathcal{B} .

Let $\varepsilon > 0$ and $\mathcal{F} \subseteq \mathcal{B}$.

Definition

We say $T \subseteq X$ is an ε -net for \mathcal{F} iff:

all sets $A \in \mathcal{F}$ with $\mu(A) \geq \varepsilon$ intersect T.

Lemma

If μ has finite support and $VC(\mathcal{F}) \leq d$, then for any $\varepsilon > 0$, there is an ε -net T for \mathcal{F} such that

$$|T| \leq \frac{8d}{\varepsilon} \log \frac{1}{\varepsilon}.$$

Using Counting Techniques

Let $k \geq 2$.

Let \mathcal{M} be a structure, and let $\phi(v_1, \ldots, v_k) \in \mathcal{L}_M$ be NIP.

Let each $V_i = M^{|v_i|}$, $E = \phi(\overline{V})$, d = VC(E), and $G = (\overline{V}; E)$.

Let each μ_i be a Keisler measure on V_i which is fap on E.

Lemma (2.17)

If $\varepsilon > 0$, there exists $D_1 \subseteq V_{\{1\}^c}$ of size at most $320d\varepsilon^{-2}$ such that for all $X \in \mathcal{A}_E(D_1)$ and all $a, a' \in X$, we have

$$\mu_{\{1\}^c}(E_{\mathsf{a}} \triangle E_{\mathsf{a}'}) < \varepsilon.$$

Proof of Lemma 2.17

Let
$$\mathcal{F} = \{ E_{a} \triangle E_{a'} : a, a' \in V_1 \} \subseteq \mathcal{P}(V_{\{1\}^c}).$$

Since $\mu_{\{1\}^c}$ is fap on E, it has an $\frac{\varepsilon}{2}$ -approximation \overline{p} for \mathcal{F} .

Now VC(\mathcal{F}) $\leq 10d$ and Fr $_{\overline{p}}$ has finite support, so there is an $\frac{\varepsilon}{2}$ -net $D_1 \subseteq V_{\{1\}^c}$ for \mathcal{F} with

$$|D_1| \leq \frac{160d}{\varepsilon} \log \frac{2}{\varepsilon} \leq \frac{320d}{\varepsilon^2}.$$

Let $X \in \mathcal{A}_E(D_1)$ and $a, a' \in X$.

It follows that $E_a \cap D_1 = E_{a'} \cap D_1$, so $(E_a \triangle E_{a'}) \cap D_1 = \emptyset$.

Thus,
$$\operatorname{Fr}_{\overline{p}}(E_{\mathsf{a}} \triangle E_{\mathsf{a}'}) < \frac{\varepsilon}{2}$$
 and $\mu_{\{1\}^c}(E_{\mathsf{a}} \triangle E_{\mathsf{a}'}) < \varepsilon$.

Applying Fubini

Proposition (2.18)

If $\varepsilon > 0$, there exists $\overline{D} \subseteq (V_{\{1\}^c}, \dots, V_{\{k\}^c})$ and $F \subseteq \overline{V}$ which is E_{\otimes} -definable over \overline{D} such that

$$\mu(E \triangle F) \leq \varepsilon$$

and $\|\overline{D}\| \le C\varepsilon^{-2d(k-1)}$ where C = C(k, d).

Proof of Proposition 2.18

Let $D_1 \subseteq V_{\{1\}^c}$ be given by Lemma 2.17 for $\varepsilon/2$, so $|D_1| \le 1280 d\varepsilon^{-2}$.

Let $\{X_1, \ldots, X_m\}$ enumerate $\mathcal{A}_{\mathcal{E}}(D_1)$.

Notice $V_1 = X_1 + \cdots + X_m$.

For each X_i , choose $a_i \in X_i$

Let $H = \bigsqcup_{i=1}^m (X_i \times E_{a_i})$.

Given $a \in V_1$, there is a unique atom X_i such that $a \in X_i$.

It follows that $H_a=E_{a_i}$, so $\mu_{\{1\}^c}(E_a \triangle H_a)<\varepsilon/2$ by Lemma 2.17.

Further, $(E \triangle H)_a = E_a \triangle H_a$, so $\mu(E \triangle H) \le \varepsilon/2$ by Fubini.

If k = 2:

Let F=H and $D_2=\{a_i:i\in[m]\}$, so F is E_{\otimes} -definable over \overline{D} and $m\leq (d+1)|D_1|^d\leq C(2,d)\varepsilon^{-2d}$

where $C(2, d) = (d + 1)(1280d)^d$.

Proof of Proposition 2.18 (cont'd)

If k > 2:

By induction, for each $i \in [m]$, we have a $Y_i \subseteq V_{\{1\}^c}$ which is $(E_{a_i})_{\otimes}$ -definable over $(B_{i,2},\ldots,B_{i,k})$ where

$$\|\overline{B_i}\| \leq C(k-1,d)(\varepsilon/2)^{-2d(k-2)}$$

such that $\mu_{\{1\}^c}(E_{a_i} \triangle Y_i) \leq \varepsilon/2$.

Let
$$F = \bigsqcup_{i=1}^m (X_i \times Y_i)$$
. Recall $H = \bigsqcup_{i=1}^m (X_i \times E_{a_i})$.

It follows that $F \triangle H = \bigsqcup_{i=1}^m (X_i \times (E_{a_i} \triangle Y_i))$, so $\mu(F \triangle H) \le \varepsilon/2$.

Further,
$$E \triangle F \subseteq (E \triangle H) \cup (H \triangle F)$$
, so $\mu(E \triangle F) \leq \varepsilon$.

For
$$j \geq 2$$
, let $D_j = \bigcup_{i=1}^m B_{i,j}$.

Now F is E_{\otimes} -definable over \overline{D} and

$$\|\overline{D}\| \le mC(k-1,d)(\varepsilon/2)^{-2d(k-2)} \le C(k,d)\varepsilon^{-2d(k-1)}$$

where $C(k, d) = 2^{2d(k-2)}C(2, d)C(k-1, d)$.

Let \overline{P} be a rectangular partition of \overline{V} .

Definition

We say $F \subseteq \overline{V}$ is *compatible* with \overline{P} iff: for all $\overline{A} \in \overline{P}$ either $\overline{A} \subseteq F$ or $\overline{A} \cap F = \emptyset$.

Definition

We call $\overline{A} \subseteq \overline{P}$ ε -regular* iff: there exists $\alpha \in \{0,1\}$ such that for all definable $\overline{B} \subseteq \overline{A}$, we have

$$|\mu(E(\overline{B})) - \alpha\mu(\overline{B})| \le \varepsilon\mu(\overline{A}).$$

The defect* of \overline{P} is

$$\mathsf{def}_{\varepsilon}^*(\overline{P}) := \{\overline{A} \in \overline{P} : \overline{A} \text{ not } \varepsilon\text{-regular}^*\},$$

and we call \overline{P} ε -regular* iff:

$$\sum_{\overline{A} \;\in\; \operatorname{def}^*_{\varepsilon}(\overline{P})} \mu(\overline{A}) \leq \varepsilon.$$

Let \overline{P} be a rectangular partition of \overline{V} .

Lemma (3.2)

If there exists an E_{\otimes} -definable $F\subseteq \overline{V}$ compatible with \overline{P} such that $\mu(E\bigtriangleup F)\leq \varepsilon^2$, then \overline{P} ε -regular*.

Proof: Let
$$\mathcal{D}=\left\{\overline{A}\in\overline{P}:\mu(\overline{A}\cap(E\bigtriangleup F))>\varepsilon\mu(\overline{A})\right\}$$
, so
$$\sum_{\overline{A}\in\mathcal{D}}\mu(\overline{A})\leq\varepsilon.$$

Let $\overline{A} \in \overline{P} \setminus \mathcal{D}$, and let \overline{B} be a definable rectangular subset of \overline{A} .

It follows that $\mu(\overline{B} \cap (E \triangle F)) \leq \varepsilon \mu(\overline{A})$.

Case 1:
$$\overline{A} \subseteq F$$

Since
$$\overline{B} \cap (E \triangle F) = \overline{B} \setminus E$$
, we have $\mu(\overline{B}) - \mu(E(\overline{B})) = \mu(\overline{B} \setminus E) \le \varepsilon \mu(\overline{A})$.

Case 2:
$$\overline{A} \cap F = \emptyset$$

Since
$$\overline{B} \cap (E \triangle F) = E(\overline{B})$$
, we have $\mu(E(\overline{B})) \leq \varepsilon \mu(\overline{A})$.

Proposition (3.3)

For any $\varepsilon > 0$, there is an E-definable ε -regular* partition \overline{P} with

$$\|\overline{P}\| \leq (d+1)C(k,d)^d \varepsilon^{-4d^2(k-1)}.$$

Proof: By Proposition 2.18, there exists $\overline{D} \subseteq (V_{\{1\}^c}, \dots, V_{\{k\}^c})$ with

$$\|\overline{D}\| \le C(k,d)\varepsilon^{-4d(k-1)}$$

and an $F \subseteq \overline{V}$ which is E_{\otimes} -definable over \overline{D} such that $\mu(E \triangle F) \leq \varepsilon^2$.

For each $i \in [k]$, let $P_i = \mathcal{A}_E(D_i)$, so $\|\overline{P}\| \leq (d+1)C(k,d)^d \varepsilon^{-4d^2(k-1)}$.

Let $\overline{A} \in \overline{P}$. Suppose $\overline{A} \cap F \neq \emptyset$, and let $\overline{a} \in \overline{A} \cap F$.

Since F is E_{\otimes} -definable, there exists $\overline{B} \subseteq F$ where each $B_i \in \mathcal{B}_E(D_i)$ such that $\overline{a} \in \overline{B}$.

It follows that $\overline{A} \subseteq \overline{B} \subseteq F$, so we can apply Lemma 3.2.

Getting back to $(\varepsilon, \delta, \eta)$ -Regularity

Lemma

If $\varepsilon, \delta, \eta > 0$, $\gamma = \min\{\varepsilon, \delta, \eta\}$ and \overline{P} is γ^2 -regular*, then \overline{P} is $(\varepsilon, \delta, \eta)$ -regular with 0-1 densities.

Proof: Suppose \overline{P} is γ^2 -regular*, and let $\overline{A} \in \overline{P} \setminus \operatorname{def}_{\gamma^2}^*(\overline{P})$.

There is an $\alpha \in \{0,1\}$ such that for all definable $\overline{B} \subseteq \overline{A}$, we have

$$|\mu(E \cap \overline{B}) - \alpha\mu(\overline{B})| \le \gamma^2\mu(\overline{A}).$$

It follows that

$$|d(\overline{B}) - \alpha| \le \gamma^2 \frac{\mu(A)}{\mu(\overline{B})}$$

yielding

$$\mu(\overline{B}) < \gamma \mu(\overline{A}) \quad \text{ or } \quad |d(\overline{B}) - \alpha| \le \gamma.$$

Definable Regularity Lemma for NIP Relations

Let $k \geq 2$ and $d \in \mathbb{N}$.

Theorem

There is a constant c = c(k, d) such that IF

- $\varepsilon, \delta, \eta > 0$
- ullet $E=\phi(\overline{V})$ for some $\phi(v_1,\ldots,v_k)\in\mathcal{L}_M$ and structure \mathcal{M}
- $VC(E) \leq d$
- ullet each μ_i is a Keisler measure on V_i which is fap on E

THEN there is an $(\varepsilon, \delta, \eta)$ -regular partition \overline{P} of \overline{V} with 0-1 densities such that

- $\|\overline{P}\| \le O(\gamma^{-c})$ where $\gamma = \min\{\varepsilon, \delta, \eta\}$
- for each P_i , the parts of P_i are definable using a single formula ψ_i which is a boolean combination of ϕ depending only on γ and ϕ .

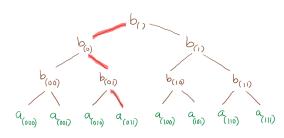
In particular, we showed $\|\overline{P}\| \leq (d+1)C(k,d)^d(1/\gamma)^{-8d^2(k-1)}$.

Stability

Let $d \in \mathbb{N}$ and $R \subseteq V \times W$.

Definition

We say R is d-stable iff: there is <u>not</u> a tree of parameters $\{b_{\tau} : \tau \in {}^{< d}2\} \subseteq W$ along with a set of leaves $\{a_{\sigma} : \sigma \in {}^{d}2\} \subseteq V$ such that for any $\sigma \in {}^{d}2$ and n < d, we have $(a_{\sigma}, b_{\sigma|_{n}}) \in R \iff \sigma(n) = 1$.



$$a_{(011)} \models \neg R(x, b_{()}) \land R(x, b_{(0)}) \land R(x, b_{(01)})$$

Stability

Let $d \in \mathbb{N}$ and $R \subseteq V \times W$.

Definition

We say R is d-stable iff: there is <u>not</u> a tree of parameters $\{b_{\tau}: \tau \in {}^{< d}2\} \subseteq W$ along with a set of leaves $\{a_{\sigma}: \sigma \in {}^{d}2\} \subseteq V$ such that for any $\sigma \in {}^{d}2$ and n < d, we have $(a_{\sigma}, b_{\sigma \mid n}) \in R \iff \sigma(n) = 1$.

Let $k \geq 2$ and $E \subseteq V_1 \times \cdots \times V_k$.

Definition

We say E is d-stable iff: for all $I \subseteq [k]$, $E_I \times E_{I^c}$ is d-stable.

Definable Regularity Lemma for Stable Relations

Let $k \geq 2$ and $d \in \mathbb{N}$.

Theorem

There is a constant c = c(k, d) such that IF

- $\varepsilon, \delta > 0$ and $\eta = 0$
- ullet $E=\phi(\overline{V})$ for some $\phi(v_1,\ldots,v_k)\in\mathcal{L}_M$ and structure \mathcal{M}
- E is d-stable
- each μ_i is a Keisler measure on V_i which is fap on E

THEN there is an $(\varepsilon, \delta, \eta)$ -regular partition \overline{P} of \overline{V} with 0-1 densities such that

- $\|\overline{P}\| \le O(\gamma^{-c})$ where $\gamma = \min\{\varepsilon, \delta\}$
- for each P_i , the parts of P_i are definable using a single formula ψ_i which is a boolean combination of ϕ depending only on γ and ϕ .

Distality

Let T be a complete NIP theory and $\mathcal U$ a monster model for T.

Definition

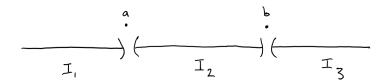
We say T is distal iff: for all $n \ge 1$, all indiscernible sequences $I \subseteq U^n$, and all Dedekind cuts $I = I_1 + I_2 + I_3$, if

$$I_1 + a + I_2 + I_3$$
 and $I_1 + I_2 + b + I_3$

are both indiscernible, then

$$I_1 + a + I_2 + b + I_3$$

is also indiscernible.



36 / 38

Definable Regularity Lemma for Distal NIP Structures

Let T be a complete distal NIP theory and $\mathcal{M} \models T$.

Let $k \geq 2$ and $\phi(v_1, \ldots, v_k) \in \mathcal{L}_M$.

Theorem

There is a constant $c = c(\mathcal{M}, \phi)$ such that IF

- $\varepsilon = \delta = 0$ and $\eta > 0$
- $E = \phi(\overline{V})$
- ullet each μ_i is a Keisler measure on V_i which is fap on E

THEN there is an $(\varepsilon, \delta, \eta)$ -regular partition \overline{P} of \overline{V} with 0-1 densities such that

- $\|\overline{P}\| \leq O(\eta^{-c})$
- for each P_i , the parts of P_i are definable using a single formula ψ_i which is a boolean combination of ϕ depending only on ϕ .

References

- [CF12] D. Conlon and J. Fox. Bounds for graph regularity and removal lemmas. *Geometric and Functional Analysis*, 22 (2012), 1191-1256.
- [CS16] A. Chernikov and S. Starchenko. Definable regularity lemmas for NIP hypergraphs. arXiv:1607.07701 [math.LO].
- [Gow97] W.T. Gowers. Lower bounds of tower type for Szemerédi's uniformity lemma. *Geometric and Functional Analysis*, 7 (1997), 322-337.
- [KS96] J. Komlós and M. Simonovits. Szemerédi's regularity lemma and its applications in graph theory. In: *Combinatorics, Paul Erdős is Eighty, Vol. 2* (Keszthely, 1993). *Bolyai Society Mathematical Studies, Vol. 2. János Bolyai Mathematical Society, Budapest* (1996), pp. 295-352.
- [MS13] M. Malliaris and S. Shelah. Regularity lemmas for stable graphs. *Transactions of the American Mathematical Society*, Vol. 336, Number 3 (2013), 1551-1585.
- [Sze76] E. Szemerédi. Regular partitions of graphs. In: Colloques Internationaux CNRS 260-*Problèmes Combinatoires et Théorie des Graphes*, Orsay (1976), pp. 399-401.